3.331 \(\int \frac{\cot ^4(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=120 \[ \frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}+\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f \sqrt{a-b}}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f} \]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f) + ((3*a + 2*b)*Cot[e + f*x]*Sqrt
[a + b*Tan[e + f*x]^2])/(3*a^2*f) - (Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(3*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.164511, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3670, 480, 583, 12, 377, 203} \[ \frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}+\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f \sqrt{a-b}}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^4/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/(Sqrt[a - b]*f) + ((3*a + 2*b)*Cot[e + f*x]*Sqrt
[a + b*Tan[e + f*x]^2])/(3*a^2*f) - (Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(3*a*f)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot ^4(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^4 \left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f}+\frac{\operatorname{Subst}\left (\int \frac{-3 a-2 b-2 b x^2}{x^2 \left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{3 a f}\\ &=\frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f}-\frac{\operatorname{Subst}\left (\int -\frac{3 a^2}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{3 a^2 f}\\ &=\frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f}+\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-(-a+b) x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{\sqrt{a-b} f}+\frac{(3 a+2 b) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a^2 f}-\frac{\cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{3 a f}\\ \end{align*}

Mathematica [C]  time = 11.0362, size = 263, normalized size = 2.19 \[ -\frac{\cos ^2(e+f x) \cot ^3(e+f x) \left (\frac{b \tan ^2(e+f x)}{a}+1\right ) \left (-8 (a-b) \sin ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \text{HypergeometricPFQ}\left (\{2,2,2\},\left \{1,\frac{5}{2}\right \},\frac{(a-b) \sin ^2(e+f x)}{a}\right )-12 b (b-a) \tan ^4(e+f x) ((b-a) \cos (2 (e+f x))-a-b) \text{Hypergeometric2F1}\left (2,2,\frac{5}{2},\frac{(a-b) \sin ^2(e+f x)}{a}\right )+\frac{6 a \sin ^{-1}\left (\sqrt{\frac{(a-b) \sin ^2(e+f x)}{a}}\right ) \left (a^2-4 a b \tan ^2(e+f x)-8 b^2 \tan ^4(e+f x)\right )}{\sqrt{\frac{(a-b) \sin ^2(2 (e+f x)) \left (a+b \tan ^2(e+f x)\right )}{a^2}}}\right )}{9 a^3 f \sqrt{a+b \tan ^2(e+f x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[e + f*x]^4/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(Cos[e + f*x]^2*Cot[e + f*x]^3*(1 + (b*Tan[e + f*x]^2)/a)*(-12*b*(-a + b)*(-a - b + (-a + b)*Cos[2*(e + f*x)]
)*Hypergeometric2F1[2, 2, 5/2, ((a - b)*Sin[e + f*x]^2)/a]*Tan[e + f*x]^4 - 8*(a - b)*HypergeometricPFQ[{2, 2,
 2}, {1, 5/2}, ((a - b)*Sin[e + f*x]^2)/a]*Sin[e + f*x]^2*(a + b*Tan[e + f*x]^2)^2 + (6*a*ArcSin[Sqrt[((a - b)
*Sin[e + f*x]^2)/a]]*(a^2 - 4*a*b*Tan[e + f*x]^2 - 8*b^2*Tan[e + f*x]^4))/Sqrt[((a - b)*Sin[2*(e + f*x)]^2*(a
+ b*Tan[e + f*x]^2))/a^2]))/(9*a^3*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Maple [C]  time = 0.369, size = 2433, normalized size = 20.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

-1/3/f/((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/a^2*(3*cos(f*x+e)^3*sin(f*x+e)*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(
1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*
b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticF((cos(f*
x+e)-1)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),((8*I*b^(3/2)*(a-b)^(1/2)-4*I*b^(1/2)*(a-b)^(1/2)
*a+a^2-8*a*b+8*b^2)/a^2)^(1/2))*a^2-6*cos(f*x+e)^3*sin(f*x+e)*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I
*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2
)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticPi((cos(f*x+e)-1)*((2*I*b^(
1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),-1/(2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)*a,(-(2*I*b^(1/2)*(a-b)^(1/2)-a+
2*b)/a)^(1/2)/((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2))*a^2+3*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(1/a*(I*cos(f*x
+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(
f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticF(
(cos(f*x+e)-1)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),((8*I*b^(3/2)*(a-b)^(1/2)-4*I*b^(1/2)*(a-b
)^(1/2)*a+a^2-8*a*b+8*b^2)/a^2)^(1/2))*a^2-6*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^
(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*(a-
b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticPi((cos(f*x+e)-1)*((
2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),-1/(2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)*a,(-(2*I*b^(1/2)*(a-b)^(
1/2)-a+2*b)/a)^(1/2)/((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2))*a^2-3*cos(f*x+e)*sin(f*x+e)*2^(1/2)*(1/a*(I*co
s(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I
*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*Ellip
ticF((cos(f*x+e)-1)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),((8*I*b^(3/2)*(a-b)^(1/2)-4*I*b^(1/2)
*(a-b)^(1/2)*a+a^2-8*a*b+8*b^2)/a^2)^(1/2))*a^2+6*cos(f*x+e)*sin(f*x+e)*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-
b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*
(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticPi((cos(f*x+e)-1)
*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),-1/(2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)*a,(-(2*I*b^(1/2)*(a-b
)^(1/2)-a+2*b)/a)^(1/2)/((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2))*a^2-3*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a
-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)
*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticF((cos(f*x+e)-1)
*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),((8*I*b^(3/2)*(a-b)^(1/2)-4*I*b^(1/2)*(a-b)^(1/2)*a+a^2-
8*a*b+8*b^2)/a^2)^(1/2))*a^2*sin(f*x+e)+6*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)
+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1
/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticPi((cos(f*x+e)-1)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2
*b)/a)^(1/2)/sin(f*x+e),-1/(2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)*a,(-(2*I*b^(1/2)*(a-b)^(1/2)-a+2*b)/a)^(1/2)/((2*I*
b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2))*a^2*sin(f*x+e)+4*cos(f*x+e)^4*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*a
^2-2*cos(f*x+e)^4*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*a*b-2*cos(f*x+e)^4*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b
)/a)^(1/2)*b^2-3*cos(f*x+e)^2*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*a^2+5*cos(f*x+e)^2*((2*I*b^(1/2)*(a-b)
^(1/2)+a-2*b)/a)^(1/2)*a*b+4*cos(f*x+e)^2*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b^2-3*((2*I*b^(1/2)*(a-b)^
(1/2)+a-2*b)/a)^(1/2)*a*b-2*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b^2)/cos(f*x+e)/sin(f*x+e)^3/((a*cos(f*x
+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.82968, size = 844, normalized size = 7.03 \begin{align*} \left [-\frac{3 \, a^{2} \sqrt{-a + b} \log \left (-\frac{{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \,{\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} - 4 \,{\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{3} - 4 \,{\left ({\left (3 \, a^{2} - a b - 2 \, b^{2}\right )} \tan \left (f x + e\right )^{2} - a^{2} + a b\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a}}{12 \,{\left (a^{3} - a^{2} b\right )} f \tan \left (f x + e\right )^{3}}, \frac{3 \, \sqrt{a - b} a^{2} \arctan \left (-\frac{2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right )^{3} + 2 \,{\left ({\left (3 \, a^{2} - a b - 2 \, b^{2}\right )} \tan \left (f x + e\right )^{2} - a^{2} + a b\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a}}{6 \,{\left (a^{3} - a^{2} b\right )} f \tan \left (f x + e\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/12*(3*a^2*sqrt(-a + b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^2 - 4*a*b)*tan(f*x + e)^2 + a^2
 - 4*((a - 2*b)*tan(f*x + e)^3 - a*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 2*
tan(f*x + e)^2 + 1))*tan(f*x + e)^3 - 4*((3*a^2 - a*b - 2*b^2)*tan(f*x + e)^2 - a^2 + a*b)*sqrt(b*tan(f*x + e)
^2 + a))/((a^3 - a^2*b)*f*tan(f*x + e)^3), 1/6*(3*sqrt(a - b)*a^2*arctan(-2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a
- b)*tan(f*x + e)/((a - 2*b)*tan(f*x + e)^2 - a))*tan(f*x + e)^3 + 2*((3*a^2 - a*b - 2*b^2)*tan(f*x + e)^2 - a
^2 + a*b)*sqrt(b*tan(f*x + e)^2 + a))/((a^3 - a^2*b)*f*tan(f*x + e)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{4}{\left (e + f x \right )}}{\sqrt{a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**4/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)**4/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )^{4}}{\sqrt{b \tan \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^4/sqrt(b*tan(f*x + e)^2 + a), x)